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ABSTRACT

The authors propose the use of a ‘‘climate filter’’ concept to enhance prediction skill of a multimodel en-

semble (MME) suite for the East Asian summer monsoon (EASM) precipitation and temperature at 850 hPa.

The method envisages grading models on the basis of the degree of reproducibility of the association of EASM

variability with a few relevant climate drivers with the respectivemodel hindcasts for the period 1981–2003. The

analysis identifies the previouswinterNi~no-3.4 and springNorthAtlanticOscillation indices as themost suitable

climate drivers in designing a climate filter for evaluating models that replicate the observed teleconnections to

EASM well. The results show that the hindcast skills of a new MME with the better-performing models are

significantly higher than those from the nonperforming models or from an all-inclusive operational MME.

1. Introduction

The summer (June–August) rainfall in East Asia is

broadly known as the East Asian summer monsoon

(EASM) and involves considerable spatial and sub-

seasonal variation [see Ding and Chan (2005) for de-

tails]. The broad spatial distribution of the interannually

variable EASM rainfall, presented in Fig. 1a, can be

gauged from the gravest mode (obtained by an empirical

orthogonal function analysis; Wilks 1995).

Skillful seasonal prediction of the EASM remains an

outstanding challenge for research and operations. In-

terestingly, newer seasonal prediction methods have

been introduced in the last decade or so, and these

methods hold promise for the general improvement of

seasonal prediction. Research in the last decade (e.g.,

Krishnamurti et al. 1999, 2000; Palmer et al. 2000;

Shukla et al. 2000; Doblas-Reyes et al. 2000, 2005; Peng

et al. 2002; Barnston et al. 2003; Hagedorn et al. 2005;

Yun et al. 2005; Sahai et al. 2008; Wang et al. 2008a,

2009; Lee et al. 2008, 2011) has shown that the multi-

model ensemble (MME) approach is an effective

method in dynamical climate prediction, in reducing the

uncertainty arising from atmospheric or oceanic model

dynamics and from physical parameterizations of un-

resolved subgrid-scale processes. The performance skill

of the MME is generally higher than that of the con-

stituent individual models. A number of meteorological/

climate prediction centers worldwide now operationally

implement dynamical MME seasonal prediction rou-

tinely (Alves et al. 2003; Palmer et al. 2004; Saha et al.

2006; Lee et al. 2009). However, Lee et al. (2011) found

that for some seasons and regions, the MME prediction

skills are relatively limited. For its potential improve-

ment, they introduced the novel concept of a ‘‘climate

filter,’’ which is based on the relative reproducibility of

a realistic climatic phenomenon. Specifically, Lee et al.

(2011) diagnosed the fidelity of various Asia-Pacific

Economic Cooperation (APEC) Climate Center (APCC)

models in reproducing the strong observed relationship
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between rainfall in the tropical PacificOcean and the local

ENSO-associated Walker circulation during boreal win-

ter. They noted that a newer MME with only the skillful

models will improve the prediction skill of ENSO tele-

connection for the regions abutting the western tropical

Pacific, such as East Asia, the western North Pacific, and

Australia, in contrast to an all model-inclusive MME or

the individual models themselves. The study hints that

models using the climate filter may provide appropriate

heat sources in the tropics, which facilitate better tele-

connection to the extratropics and beyond. Encouraged

by the above study, we now wish to explore the potential

of the aforementioned technique to improve the EASM

rainfall prediction. We find that it is difficult to grade the

models as more or less skillful, however, simply based on

the relationship between the ENSO-associated Walker

circulation and tropical Pacific rainfall for the boreal

summer season, especially over the East Asian summer

monsoon region (608N–08, 1108–1608E). The choice of this
specific region for our study is explained in section 2c.

Important is that the EASM is influenced by the climate

dynamics of the midlatitudes as well as by the large-scale

tropical circulation, in addition to ENSO (Wang et al.

2008b; Lee et al. 2005;Wuet al. 2009; Gong et al. 2011; Gu

et al. 2009), and has complex spatial and temporal struc-

tures. It is therefore imperative to identify various other

relevant and significant climate drivers, whose individual

or combined reproducibility will improve the prediction

skills of the East Asian summer monsoon rainfall. It will

also be useful to evaluate which of the available various

EASM indices are more suitable as a predictor for the set

of models.

The goal of the current study is to develop and facilitate

the use of an expanded climate filter method to design

a more effective MME suite for better predicting the

EASM. The next section describes the observational and

model data used, the various EASM indices (EASMIs)

investigated, and the most important potential climate

drivers in predicting the EASM variations. The section also

introduces amulticlimate driver-based climate filter to rank

FIG. 1. The distribution of (a) the spatial pattern of the first EOF mode for the observed precipitation and (b) regressed precipitation

pattern on the WF index as an EASMI. (c) The corresponding principal component time series for observed precipitation (red line) and

time series of EASMI (blue line). Temporal correlation between the first PC time series of the observed precipitation and EASMI is also

given in the upper right.
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the individual models. In section 3, the relative perfor-

mances of the various MMEs in terms of hindcast and

forecast skills are presented. The summary and conclu-

sions of the study can be found in section 4.

2. Design of the climate filter and the datasets used

a. Data used

Hindcast outputs for the period of 1981–2003 from

10 seasonal prediction models, which make up a major

part of the operational MME for the APCC, have been

used in the present study. The selection of these models

is based on availability of the longest and most con-

tinuous quality-controlled common hindcast datasets.

The description of the models is presented in Table 1.

In addition, the National Centers for Environmental

Prediction (NCEP)–U.S. Department of Energy (DOE)

reanalysis 2 (Kanamitsu et al. 2002), and the Climate

Prediction Center Merged Analysis of Precipitation

(CMAP) (Xie and Arkin 1997) for the boreal summer

seasons [June–August (JJA)] are used for the same pe-

riod as observations for general circulation and rainfall.

We also use the monthly-average global sea ice and sea

surface temperature (GISST) version-2.2 (Rayner et al.

1996) datasets, and optimum interpolation SST (OISST)

version-2 (Reynolds et al. 2002) datasets.

We adopt a simple compositeMMEmethod (Peng et al.

2002; Kang et al. 2009; Lee et al. 2008, 2009, 2011), which

assigns equal weights to the ensemble mean predictions of

individual models. The performance of this method is on

par with the best available operational MME techniques

(Lee et al. 2009). Henceforth, the term ‘‘MME’’ refers to

this simple composite method, unless otherwise speci-

fied. The MME results are generated by the application

of a bias correction (Lee et al. 2009, 2011) to model

forecast anomalies, which are obtained from the standard

‘‘leave-one-out’’ cross-validation method (Michaelsen

1987; Jolliffe and Stephenson 2003; World Meteorological

Organization 2006; Kang et al. 2009). This cross-validation

method essentially computes seasonal anomalies for each

model parameter, from the corresponding yearly clima-

tological means obtained by excluding information from

the target year, as well as those of observations.

Finally, to explore its practical utility, the new meth-

odology is applied in forecast mode to predict the

EASM signals during the two boreal summer seasons of

JJA 2009 and JJA 2010, for which forecast data from

each of the participant models are available.

b. Comparison of the EASM indices and
identification of important drivers

A climate filter involves the selection of better models

based on the reproducibility of an observed physical re-

lationship relevant to the region of interest—in this case,

the EASM region. In addition, given that models are not

always successful in simulating EASM rainfall variability,

an efficient measure of model selection entails identifi-

cation of a good dynamical–physical monsoon index from

a choice of candidates, for which models are able to show

improved simulation. Such an index should, of course,

provide a succinct description of the EASM circulation

variability on a broad scale. In addition, to focus in on the

physical relationships that form the filter [e.g., ENSO-

related Walker circulation in the case of winter tropical

Pacific rainfall prediction, proposed by Lee et al. (2009)],

as required in the current study, we explore the influence

of various external climate phenomena in driving index

form1 and affecting EASM climate variability. These

large-scale climate variations, such as ENSO and the

TABLE 1.Descriptions of the individualmodels used.Here POAMA is the PredictiveOcean–AtmosphereModel forAustralia, GEM is

theGlobal EnvironmentalMultiscaleModel, GM2 andGM3 are the second- and third-generation atmospheric general circulationmodels

of the Canadian Centre for Climate Modelling and Analysis, SEF is Spectral aux �El�ements Finis, GCPS is the Global Climate Prediction

System, and GDAPS is the Global Data Assimilation and Prediction System.

Member economies Acronym for models Organization Model resolution

Australia POAMA Bureau of Meteorology Research Centre T47L17

Canada MSC_GEM Meteorological Service of Canada 28 3 28 L50
MSC_GM2 T32L10

MSC_GM3 T63L32

MSC_SEF T95L27

Taiwan CWB Central Weather Bureau T42L18

South Korea GCPS Seoul National University T63L21

GDAPS_F Korea Meteorological Administration T106L21

NIMR National Institute of Meteorological Research 58 3 48 L17
United States NCEP National Centers for Environmental Prediction T62L64

1 A climate index is defined as a calculated value that can be used

to describe the state and changes in the climate system. In this

study, the climate drivers mean climate indices for large-scale cli-

mate variations influencing not only the EASM but also the global

climate. They are largely independent of EASM variability in

terms of their own interannual variation and evolution.
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North Atlantic Oscillation (NAO), are the driving forces

behind the climate variability not only in the EASM, but

also across many regions of the globe.

We briefly introduce below the four dynamical EASM

circulation indices (Wang and Fan 1999; Huang 2004;

Zhang et al. 2003; Wang et al. 2001) that we consider in

this study. We also introduce the four important climate

drivers whose significant impacts on the EASM have

been documented (Wang et al. 2008b; Li and Wang

2003;Wu et al. 2009; Thompson andWallace 1998; Gong

et al. 2011; Gu et al. 2009).

1) EAST ASIAN SUMMER MONSOON INDICES

The four dynamical EASM circulation indices are

described in this section, along with their equations.

(i) The Wang and Fan index (Wang and Fan 1999;

henceforth, the WF index) is defined as the differ-

ence of the area-averaged zonal wind at 850 hPa

(U850) between two boxes:

WF5U850
(582158N,90821308E)

2U850
(22:58232:58N,110821408E)

. (1)

This indexwas designed to quantify the variability of

the western North Pacific (WNP) summer monsoon

circulation. This index reflects the relative variations

in both the WNP monsoon trough and subtropical

high; it is known that the two subsystems are the key

elements of the EASM circulation system (Tao and

Chen 1987). This index provides a useful measure of

the subtropical and extratropical EASM (Wang

et al. 2008b).

(ii) The East Asia–Pacific index of Huang (2004;

hereinafter EAP index) is defined as follows:

EAP520:25Z0s(608N,1258E)
1 0:50Z0s(408N,1258E)

2 0:25Z0s(208N,1258E)
, (2)

where Zs
0 5 Z0 sin458/sinu and represents the stan-

dardized seasonal mean 500-hPa height anomaly at

a grid point provided in the associated parenthesis,

with the latitude u. The quantity Z0 is the summer

seasonal-mean 500-hPa height anomaly at the grid

point. Previous studies (Huang and Sun 1992;Huang

2004) show that the EASM has a close relationship

with the EAP teleconnection pattern.

(iii) The zonal wind difference index of Zhang et al.

(2003; hereinafter the Zh index) is defined as the dif-

ference in the area-averagedU850 between two areas:

Zh5U850
(1082208N,100821508E)

2U850
(2582358N,100821508E)

. (3)

The index reflects the seesaw variation in convec-

tive intensity between the tropical monsoon trough

and mei-yu front over the East Asia region (Zhang

et al. 2003).

(iv) The meridional variation in the southerly compo-

nent is an East Asian monsoon index defined by

Wang et al. (2001) (hereinafter called the EAM

index). This is defined as the difference between

the JJA mean 850-hPa meridional wind anomalies

averaged over the southern portion of themonsoon

domain (208–308N, 1108–1408E) and those over the

northern part (308–408N, 1108–1408E):

EAM5V850
(2082308N,110821408E)

2V850
(3082408N,110821408E)

. (4)

Wang et al. (2001) find that the index represents a

delayed impact of El Ni~no on the East Asia sum-

mer monsoon because of the significant correlation

between the summer EAM index and the pre-

ceding autumn Ni~no-3 SST anomaly (SSTA).

2) CLIMATE DRIVERS OF THE EAST ASIAN

SUMMER MONSOON

In this work, we consider the following important

climate drivers of the EASM as potential candidates for

designing a climate filter to rank the individual model

hindcasts.

(i) The first driver is the Ni~no-3.4 index in the previous

winter. Wang et al. (2008b) find a strong and

significant positive correlation between the first

principal component (PC1) of EASM precipitation

in JJA(0) and the Ni~no-3.4 index (seasonal SSTA

area-averaged over 58S–58N, 1708–1208W) in the

previous winter D(21)JF(0). Based on this work,

we identify the Ni~no-3.4 index during the pre-

ceding winter as representing a potential candi-

date for the design of the climate filter.

(ii) The second driver is the spring NAO anomaly. Wu

et al. (2009) indicate that variability of the anom-

alous spring (April–May months, just prior to the

summer season) NAO is tied to EASM variability.

The NAO index is calculated as difference of the

normalized monthly zonal-averaged sea level pres-

sures (SLPs) over the longitudes of 808W–308E at

the two latitude zones (358 and 658N) (Li and Wang

2003; Wu et al. 2009).

(iii) The third driver is the Arctic Oscillation (AO) during

the spring. A stronger-than-normal AO during the

spring season (March–May) tends to enhance the

horizontal wind shear at the 850-hPa level over
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East Asia in the following summer. This, in turn,

tends to enhance the rainfall (Gong et al. 2011).

Following Thompson andWallace (1998) and Gong

et al. (2011), we compute the AO index (AOI) for

the spring months as the principal component asso-

ciated with the first empirical orthogonal function

(EOF) of the monthly SLP north of 208N.

(iv) The fourth driver is the preceding winter North

Atlantic SSTA. Gu et al. (2009) find that the winter-

time North Atlantic SSTA could exert a delayed

impact on East Asian circulation in the following

summer. North Atlantic SSTA is strongly correlated

with mei-yu rainfall. Following Gu et al. (2009), we

compute the North Atlantic SSTA index (INA) as the

difference between the normalized area-averaged

SSTA for 408–558N, 308–158W and 258–358N, 758–
608W.

3) RELATIONSHIP BETWEEN EASM INDICES AND

DRIVERS OF THE EASM

To confirm agreement between the four EASM indices

discussed above, we present the temporal intercorrelation

coefficients between individual EASM indices for the

study period of 1981–2003 (Table 2). As expected, these

are highly correlatedwith one another, and are significant,

above 95% confidence level from a two-tailed Student’s

t test. This means that any of these indices can be used

to monitor and predict EASM variability.

Table 3 catalogs the correlations between the various

EASM indices and the EASM drivers, listed in sub-

section 2b above. It can be discerned that most of the

EASM indices shown have significant correlations

(20.61,20.55,20.70, and 0.49) with the previous winter

Ni~no-3.4 index, indicating that the ENSO signal during

the preceding winter is an important contributor to the

interannual variability of the EASM. However, the

preceding winter INA index shows a relatively poor re-

lationship with the EASM indices. We also find that the

spring NAO index has a statistically significant and

strong correlation with only theWF index as opposed to

all EASM indices.

It can be seen that theWF index, among all the EASM

indices, displays the strongest correlations with the ma-

jority of the drivers. In particular, it is very closely related

to the observed ENSO and NAO forcings. In addition,

there is no apparent strong relationship between the in-

dices of the preceding winter Ni~no-3.4 and the spring

NAO (figure not shown), suggesting that they cannot be

independent predictors for the EASM variability.

Based on these results, we decide to use theWF index

as the primary EASM index in this work. To justify this,

we present the EASM precipitation regressed onto the

WF index (Fig. 1b). Both Figs. 1a and 1b show a merid-

ional tripole structure that are similar to one another,

confirming the suitability of the WF index in repre-

senting the EASM variability. We particularly note

a continuous zonal band covering eastern China, the

Korean Peninsula, Japan, and eastward, with opposite

signatures over the South China Sea, the western Pacific

including the Philippine Sea to the south, and over the

vicinity of the Okhotsk Sea to the north (Figs. 1a,b). The

pattern reminds us of the well-known Pacific–Japan

pattern proposed by Nitta (1987). The time series of the

corresponding principal components for the observed

EASM precipitation andWF index are shown in Fig. 1c.

These are very strongly correlated at 0.86, and the pat-

tern correlation between the distributions shown in Figs.

1a and 1b amounts to 0.85.

Further, we propose to utilize the preceding winter

Ni~no-3.4 and the spring NAO indices, as the drivers

from the tropics and midlatitudes, respectively (Wu

et al. 2009), to design a climate filter.

c. Climate filter to predict the EASM rainfall

In the preceding sections, we established the appro-

priateness of the WF index to represent the interannual

TABLE 2. Intertemporal correlation between various EASMIs.

The asterisks and double asterisks mean that the skill scores are

significant at the 99% and 95% confidence level from two-tailed

Student’s t test, respectively.

EASMI

(WF, JJA)

EASMI

(EAP, JJA)

EASMI

(Zh, JJA)

EASMI

(EAM, JJA)

EASMI

(WF, JJA)

0.59* 0.95* 20.73*

EASMI

(EAP, JJA)

0.59* 0.63* 20.43**

EASMI

(Zh, JJA)

0.95* 0.63* 20.78*

EASMI

(EAM, JJA)

20.73* 20.43** 20.78*

TABLE 3. Temporal correlation between various EASMIs and

impacts related to EASM. The a, b, and c superscripts indicate that

the skill scores are significant at the 99%, 95%, and 90%, confi-

dence level from two-tailed Student’s t test, respectively. DJF 5
December–February; AM 5 April–May; MAM 5 March–May.

Ni~no-3.4
(previous DJF)

NAOI

(AM)

AOI

(MAM)

INA

(previous DJF)

EASMI

(WF, JJA)

20.61a 0.45b 20.39c 0.08

EASMI

(EAP, JJA)

20.55a 0.09 0.08 0.13

EASMI

(Zh, JJA)

20.70a 0.30 20.30 0.15

EASMI

(EAM, JJA)

0.49b 20.13 0.32 0.15
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variability of the EASM. We have also identified the

spring NAO index (NAOI) and previous winter Ni~no-

3.4 index as the best-linked indices representing im-

portant climate drivers of EASM variability. From Figs.

1a and 1b, we can also accept that the region 608N–08,
1108–1608E can designate the East Asia summer mon-

soon area and a close relationship between monsoon

rainfall and EASM index over the EASM region is ob-

served. This work suggests that reproducibility of the

observed relationships between the East Asian mon-

soon circulation and the preceding winter ENSO and/or

spring NAO impact will be important minimum re-

quirements for any model possessing the necessary fi-

delity. Therefore, we use these two conditions as a basis

to design a climate filter to classify the individual con-

stituent models.

Specifically, following the general methodology of

Lee et al. (2011), we carry out the following computations:

(i) We utilize the observed preceding winter Ni~no-3.4

index and the spring NAO index as weights to

compute the ENSO-associated EASMI and NAO-

associated EASMI in the models.

(ii) We then obtain the squared partial correlation

coefficient between the WF index, and the pre-

ceding winter Ni~no-3.4 index, adjusted for spring

NAO, subsequently obtaining the squared partial

correlation coefficient between the WF index and

spring NAO, after separating out any impact from

the preceding winter Ni~no-3.4. As is known, the

squared correlation coefficient describes the frac-

tion of variance in common between the two vari-

ables and is one of the bestmeans for evaluating the

strength of a linear association between x and y

(Wilks 1995; Spiegel and Stephens 2008); it is

widely used in climate studies and applications

(Nicholls 1989; Ashok et al. 2003, 2007, 2009; Saji

and Yamagata 2003, etc.). From this point, the

computed squared correlation coefficient between

the WF index and spring NAO/previous winter

Ni~no-3.4 index is used as an appropriate weight

representing the variance of EASMI associated

with the spring NAO index/previous winter Ni~no-

3.4 index.

(iii) In the next step, we carry out a scatter diagram

analysis to identify the models that capture the

FIG. 2. The ENSO-associated EASMI defined by the U850 in

(58–158N, 908–1308E) minus U850 in (22.58–32.58N, 1108–1408E)
from observation (y axis), for 23 boreal summers in the period

of 1981–2003, plotted against those from the individual models

(x axis) for models 1–10. The blue solid line is the statistical line of

 
fit, and the red dashed line is a reference diagonal line. The slope

b from the regression line of fit is provided in the upper left. The

term xycorr stands for the temporal correlations between the ob-

servation and each model.
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variability associated with the previous winter

ENSO, and that of the spring NAO. Then, we

compute the local ENSO- and NAO-associated

EASMI applying the aforementioned weights from

observations for the 23 boreal summers during the

study period of 1981–2003. The ENSO- and NAO-

associated EASM indices are also computed for

each model from hindcast data for the same period.

The observed previous winter ENSO- and spring-

NAO-associated EASM index is plotted separately

against those from individual models. The repro-

duction of both the associations, subject to some

objective conditions described in the next para-

graph, forms our proposed climate filter that would

distinguish the most skillful models.

We have used two objective conditions defined by Lee

et al. (2011) to identify the skillful models. These two

criteria are (i) that the slope of the fit between the ob-

served and predicted EASM index should be greater than

0.5 and less than 1.5, and (ii) that the temporal correlation

coefficient between two indices is more than 0.4, the sta-

tistically significant value at the 90% confidence level from

a two-tailed Student’s t test for the period of 1981–2003.

In this study, we employ the Student’s two-tailed t test

(Wilks 1995; Spiegel and Stephens 2008) to evaluate

significance levels. While applying this test to temporal

correlations, we compute the statistical significance us-

ing the simple number of degrees of freedom, while for

the spatial pattern correlations we applied the effective

spatial degree of freedom (ESDOF) criterion (Snedecor

and Cochran 1980; Bretherton et al. 1999; Wang and

Shen 1999). Finally, while applying the climate filter to

model selection for the study period of 1981–2003, we

use the leave-one-out cross validation (Michaelsen 1987;

Jolliffe and Stephenson 2003; World Meterological

Organization 2006; Kang et al. 2009) in each target year

to examine the selection of models.

3. Evaluation of the hindcast relationship through
the climate filter method

Figures 2 and 3 show the scatter diagrams illustrating

the reproducibility of EASM indices influenced by the

previous winter Ni~no-3.4 and spring NAO impacts, re-

spectively. Applying the two objective conditions men-

tioned above, we found that only 5 out of the 10 models

passed. For convenience, we group the five better-

performing models, which successfully reproduced the

observed association with ENSO during previous winter,

and the spring NAO, as class A models (models 2, 5, 6, 8,

and 10). The remaining models are grouped as class B

(models 1, 3, 4, 7, and 9).

FIG. 3. As in Fig. 2, but for the NAO-associated EASMI.
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Next, following Lee et al. (2011), three separateMME

hindcast experiments have been carried out, which are

named as the A5 experiment (based on the hindcasts

from the class A models), the B5 experiment (uses the

hindcasts from the class B models), and the M10 ex-

periment (uses the hindcasts from all 10 models). The

time series of the spatial pattern correlations between

the observed and hindcast rainfall from all three MME

experiments and individual models over the East Asian

summer monsoon region are shown in Fig. 4a, and the

corresponding results for the 850-hPa temperature in

Fig. 4b. In general, it can be discerned that the pre-

diction skills of the MME are superior to those of in-

dividual models. Notwithstanding an apparent uniform

level of skills across a few years, we find significant dif-

ferences in the prediction skills, as shown in Table 4.

Especially, it is notable that the 0.34 skill score of the A5

experiment (significant at 85% confidence level from

two-tailed Student’s t test; ESDOF 5 16.6) for the

rainfall is significantly higher than the corresponding

skill score of 0.23 from the B5 experiment (significant at

70% confidence level from two-tailed Student’s t test;

ESDOF 5 21.3) in Fig. 4a, and betters the skill (0.32)

from theM10 experiment (significant at 85% confidence

level from the two-tailed t test; ESDOF 5 20.3). In ad-

dition, we can see that the time averaged MME pre-

diction skills for precipitation are slightly higher than

those for temperature at 850 hPa in Table 4.

FIG. 4. Time series of the spatial pattern correlations between the observed and the predicted

(a) precipitation from M10 (dashed red line), A5 (solid blue line), B5 (dotted green line), and

individual models (colored symbols) over the East Asian summer monsoon (608N–08, 1108–
1608E) region. M10, A5, and B5 are the multimodel ensemble predictions based on a simple

compositemethod using the total of 10models, the 5more skillful models, and the 5 less skillful

models, respectively. (b) As in (a), but for the 850-hPa temperature.
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To further clarify the significance of the performance

of the three types of MME for precipitation, we also

carry out a significance test using a ranking distribution

of a time-averaged pattern correlation for various five-

model combinations using independent possible choices

of five models from all the given 10 models (10C5)

equaling 252 combinations (see Fig. 5). After counting

the number of combinations that have skills equal to or

higher than the MME-predicted skill for each experi-

ment respectively, the ratios of the counted number to

the total number of combinations are calculated (Wilks

1995; Tanizaki 2006). It is apparent that the A5 MME

prediction skill (14/252, significant at 94.44% confidence

level) is superior not only to the B5 MME prediction

skill (249/252, significant at the 1.19% confidence level)

but also to the M10 MME skill (54/252, significant at

78.57% confidence level).

To investigate the spatial distribution of prediction

skills of all the MMEs for precipitation and temperature

at 850 hPa, we present the relevant temporal correlation

coefficients for the period of 1981–2003 in Fig. 6. It is clear

that over the whole East Asian summer monsoon region,

the prediction skills (domain-averaged skills for rainfall

and temperature are 0.262 and 0.350 respectively) of the

A5 experiment are significantly better than those (0.172

and 0.269) of B5 for both variables, and somewhat better

than the skills (0.248 and 0.333) from M10.

However, we find that the MME prediction skills for

precipitation are poor and insignificant over several land

areas. Primarily, it can be found that the overall rainfall

performances of individual models are relatively poor

over the land area in comparison with those over the

ocean (figure and table not shown). This fact suggests

that performance enhancement of the individual models

should be a fundamental basis for overcoming the lim-

itations of the MME seasonal prediction.

We have applied the climate filter method to real-time

forecasts to assess the potential usefulness of this

method. The MME forecast dataset for the two boreal

summer seasons from June to August 2009 and from June

to August 2010 over the East Asia summer monsoon

(1108–1608E and 08–608N) region are used. The spatial

pattern correlations for rainfall and 850-hPa temperature

are depicted in Fig. 7. The A5 MME prediction skills for

two variables (precipitation of 2009 and temperature of

2010) are better than those of both the all model-inclusive

M10 and B5 MMEs. However, all the MME experiments

indicate the insignificant skill scores for the anomalous

2009 temperature and 2010 rainfall distribution, the rea-

sons for which need to be examined further.

4. Summary and conclusions

We propose and demonstrate a new approach to en-

hancing MME prediction skill for EASM rainfall and

850-hPa temperature by evaluating the relative capa-

bilities of a suite of models to reproduce the association

of the EASM variability with a few relevant climate

drivers for the period 1981–2003. The NCEP–DOE re-

analysis 2 (Kanamitsu et al. 2002), CMAP rainfall (Xie

TABLE 4. Time average of the spatial pattern correlations be-

tween the observation and various multimodel ensemble hindcast

experiments (M10, A5, and B5) for precipitation and temperature

at 850 hPa over the EASM (608N–08, 1108–1608E) region.M10, A5,

andB5 comprise all 10models, the 5more skillful models, and the 5

less skillful models, respectively.

Variables

Correlations

M10 A5 B5

Precipitation 0.323 0.343 0.226

850-hPa temperature 0.137 0.167 0.075

FIG. 5. A time average of spatial pattern correlations between

the observed and the MME-predicted precipitations, which are

computed by 5-model combinations using independent possible

choice of 5 models (10C55 252) from the original 10 models, over

the East Asia summer monsoon region. The gray circles show the

prediction skills of 252 total combinations. The red open circle,

blue filled circle, and green square indicate MME prediction skills

using the total of 10models (M10), the 5more skillful models (A5),

and the 5 less skillful models (B5), respectively. The black plus sign

indicates the averaged skill of the total combinations.
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and Arkin 1997), SST datasets from GISST 2.2 (Rayner

et al. 1996) and OISST v2 (Reynolds et al. 2002), and

APCC operational MME hindcast datasets are used in

this study. The EASM is subject to complex variability,

spatial and temporal structures, and is not only influ-

enced by climate variations originating in the tropics but

also by those from midlatitudes. We identified the

observed WF (Wang and Fan 1999) as the most suitable

EASM variability index in this study. Further, through

a diagnostic analysis, we identified two major climate

drivers, namely the previous winterNi~no-3.4 index (Wang

et al. 2008b) and spring NAO index (Li and Wang 2003),

as the most suitable drivers of EASM climate, which

may be used to design a climate filter to grade model

FIG. 6. Temporal correlation coefficients between the observed and predicted (left) precipitation and (right)

temperatures at 850 hPa from (a),(b)A5, (c),(d)B5, and (e),(f)M10. The contour line depicts the region of significant

correlation (0.413) at the 95% confidence level from a two-tailed Student’s t test.
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performances. We graded the models based on the de-

gree of reproducibility of the association of EASM

variability and the aforementioned climate drivers in the

respectivemodel hindcasts. It can be seen that theMME

hindcast skills from five better-performing models are

significantly higher in retrospective prediction of the

EASM variability, compared to those from an MME

with the rest of the nonperforming models, and also

from an all-inclusive 10-model MME. However, the

relatively small size of available hindcast and forecast

datasets poses a sampling limitation, particularly in the

forecast cases. Nonetheless, this research, built on the

earlier work byLee et al. (2011), indicates that theMME

is better skilled if models that can reproduce observed

response to major drivers are used.
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